miércoles, 6 de noviembre de 2013

¿Por qué vuelan los aviones? - Teoría de Bernoulli

La sustentación que mantiene al avión en el aire sólo se puede crear en presencia de un fluido, es decir, de la masa de aire que existe dentro de la atmósfera terrestre. Ni la sustentación ni la resistencia se producen en el vacío. Por esa razón las naves espaciales no necesitan alas para moverse en el espacio exterior donde no hay aire, con excepción de los transbordadores que sí la necesitan para maniobrar a partir del momento que reingresan en la atmósfera terrestre y poder después aterrizar.

Existen dos teorías acerca de la creación de la sustentación: la de Bernoulli y la de Newton. Aunque ninguna de las dos se consideran perfectas, ayudan a comprender un fenómeno que para explicarlo de otra forma requeriría de una demostración matemática compleja.

Teoría de Bernoulli

La teoría del científico suizo Daniel Bernoulli (1700-1782), constituye una ayuda fundamental para comprender la mecánica del movimiento de los fluidos. Para explicar la creación de la fuerza de levantamiento o sustentación, Bernoulli relaciona el aumento de la velocidad del flujo del fluido con la disminución de presión y viceversa.

Según se desprende de ese planteamiento, cuando las partículas pertenecientes a la masa de un flujo de aire chocan contra el borde de ataque de un plano aerodinámico en movimiento, cuya superficie superior es curva y la inferior plana (como es el caso del ala de un avión), estas se separan. A partir del momento en que la masa de aire choca contra el borde de ataque de la superficie aerodinámica, unas partículas se mueven por encima del plano aerodinámico, mientras las otras lo hacen por debajo hasta, supuestamente, reencontrarse en el borde opuesto o de salida.

Teóricamente para que las partículas de aire que se mueven por la parte curva superior se reencuentren con las que se mueven en línea recta por debajo, deberán recorrer un camino más largo debido a la curvatura, por lo que tendrán que desarrollar una velocidad mayor para lograr reencontrarse. Esa diferencia de velocidad provoca que por encima del plano aerodinámico se origine un área de baja presión, mientras que por debajo aparecerá, de forma simultánea, un área de alta presión. Como resultado, estas diferencias de presiones por encima y por debajo de las superficies del plano aerodinámico provocan que la baja presión lo succione hacia arriba, creando una fuerza de levantamiento o sustentación. En el caso del avión, esa fuerza actuando principalmente en las alas, hace que una vez vencida la oposición que ejerce la fuerza de gravedad sobre éste, permita mantenerlo en el aire.



El flujo de partículas de la masa de aire al chocar contra el borde de ataque del ala de un avión, se bifurca y toma dos caminos: (A) un camino más largo, por encima de la superficie curva del plano aerodinámico y otro camino más corto (B), por debajo. En la parte superior se crea un área de baja presión que succiona hacia arriba venciendo, en el acaso del ala, la resistencia que opone la fuerza de gravedad.

El teorema de Bernoulli es la explicación más comúnmente aceptada de cómo se crea la sustentación para que el avión se mantenga en el aire. Sin embargo, esa teoría no es completamente cierta, pues si así fuera ningún avión podría volar de cabeza como lo hacen los cazas militares y los aviones de acrobacias aéreas, ya que al volar de forma invertida no se crearía la fuerza de sustentación necesaria para mantenerlo en el aire al variar la forma de las alas. De hecho, las alas de esos tipos de aviones son simétricas por ambos lados.


Secciones transversales de tres tipos diferentes de alas:
(A) ala estándar.
(B) perfil típico del ala de un avión de acrobacia aérea.
(C) ala de un caza de combate. Observe que ni el ala “B” ni la “C” son planas por debajo.


De cualquier forma la teoría de Bernoulli no es desacertada por completo, pues en realidad durante el vuelo de un avión el aire siempre se mueve más rápido por la parte de arriba que por la de abajo del ala, independientemente de la forma de su sección transversal. Como postula en parte el teorema, esa diferencia de velocidad origina una baja presión encima del ala que la succiona hacia arriba y, por tanto, crea la sustentación. Sin embargo, contrariamente a esa teoría, las partículas que viajan por arriba de un plano aerodinámico nunca se llegan a reencontrar con las que viajan por debajo.




No hay comentarios:

Publicar un comentario